Indian School Muscat Chemistry Department Senior Section IIT – JEE Solid State

- 1 A crystallizes in a body centred cubic lattice with edge length 'a' equal to 387 pm. The distance between two A's in the lattice is
 - A. 300 B. 335 C. 250
 - D. 200
- 2 If NaCl is doped with 10^{-4} mol % of SrCl₂, the concentration of cation vacancies will be (N_A = 6.02×10^{23} mol⁻¹)
 - A. $6.02 \times 10^{23} \text{ mol}^{-1}$ B. $6.02 \times 10^{16} \text{ mol}^{-1}$ C. $6.02 \times 10^{17} \text{ mol}^{-1}$ D. $6.02 \times 10^{18} \text{ mol}^{-1}$
- 3 Silicon (IV) oxide which is found in mineral quartz is very similar to
 - A. graphite
 - **B.** diamond
 - C. iron
 - **D.** copper
- 4 Metal which can be melted even by warmth of human palm is
 - A. gallium
 - B. indium
 - C. aluminum
 - D. tungsten
- 5 Diamonds are hard and
 - A. do not conduct electricity
 - B. bear high melting point
 - C. bear high boiling point
 - **D.** All of Above

6 Metals can be hammered into different shapes and drawn into wires hence they are

- A. soft
- **B.** malleable
- C. strong
- D. weaker
- 7 Giant molecule is also name given to
 - A. ionic lattice
 - **B.** crystal lattice
 - C. metallic lattice
 - **D.** covalent lattice
- 8 The number of octahedral void(s) per atom present in a cubic close-packed structure is
 - A. 2
 - **B.** 4
 - **C.1**
 - **D.** 3

9 Percentage of free space in a body centred cubic unit cell is

- A. 32%
- **B. 34%**
- C. 26%
- D. 20%
- 10 The appearance of colour in solid alkali metal halides is generally due to
 - A. Schottky defect
 - B. Frenkel defect
 - C. Interstitial defect
 - **D.** F-centre

11 In a face-centered cubic lattice, a unit cell is shared equally by how many unit cells?

- A. 2
- **B.** 4
- C. 6
- **D.** 8
- 12 A compound formed by elements X and Y crystallizes in a cubic structure in which atoms X are at the corners of the cube and atoms Y are at the face-centers. The formula of the compound is

A. X₃Y

- B. XY₃C. XY
- $D. X_2Y_3$
- 13 The pyknometric density of sodium chloride crystal is 2.165 ×10³ kg m⁻³ while its X-ray density is 2.178 × 10³ kg m⁻³. The fraction of the unoccupied sites in sodium chloride crystal is
 - A. 5.96
 B. 5.96 X 10⁻¹
 C. 5.96 X 10⁻²
 D. 5.96 X 10⁻³
- 14 A metal crystallizes with a face-centered cubic lattice. The edge of the unit cell is 408 pm. The diameter of the metal atom is
 - A. 144 B. 248 C. 288 D. 418
- 15 In a compound, atoms of element Y form ccp lattice and those of element X occupy 2/3 rd of tetrahedral voids. The formula of the compound will be
 - A. X_3Y_4
 - **B.** X₄Y₃
 - **C.** X₂Y
 - **D.** X_2Y_3
- 16 In a face-centered cubic lattice, a corner atom is equally shared by how many unit cells?
 - A. 2
 - **B.** 4
 - C. 6
 - **D.** 8
- 17 Total volume of atoms present in face-centred cubic unit cell of metal is (r is atomic radius)
 - A. 24/3 πr_{3}^{3}
 - B. 12/3 πr³
 - C. $16/3 \pi r^3$
 - D. 20/3 πr³
- 18 An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of faces of the cube. The empirical formula of the compound would be

- A. A₃B
 B. AB
 C. AB₃
 D. A₂B
- 19 How many unit cells are present in a cube-shaped ideal crystal of NaCl of mass 1.0 g?
 - A. 5.14×10^{21} B. 1.28×10^{21} C. 1.17×10^{21} D. 2.57×10^{21}
- 20 A solid has a structure in which W atoms are located at the corners of a cubic lattice, O atom at the centre of the edges and Na atom at centre of the cubic. The formula for the compound is (A) NaWO₂ (B) NaWO₃ (C) Na₂WO₃ (D) NaWO₄
- 21 The density of CaF_2 (fluorite structure) is 3.18 g/cm³. The length of the side of the unit cell is (A) 253 pm (B) 344 pm (C) 546 pm (D) 273 pm
- 22 Which of the following statements is/are correct : (A) The coordination number of each type of ion in CsCl is 8. (B)A metal that crystallises in BCC structure has a coordination number 12. (C) A unit cell of an ionic crystal shares some of its ions with other unit cells (D) The length of the unit cell in NaCl is 552 pm. $[r_{Na^+} = 95 \text{ pm}; r_{Cl^-} = 181 \text{ pm}]$ 23 Which of the following statements is/are correct : (A) In an anti-fluorite structure anions form FCC lattice and cations occupy all tetrahedral voids. (B) If the radius of cations and anions are 0.2 Å and 0.95 Å then coordinate number of cation in the crystal is 4. (C) An atom/ion is transferred from a lattice site to an interstitial position in Frenkel defect. (D) Density of crystal always increases due to substitutional impurity defect. 24 Fraction of total volume occupied by atoms in a simple cube is -(B) $\frac{\sqrt{3}\pi}{2}$ (C) $\frac{\sqrt{2}\pi}{6}$ (A) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$ In a crystal both ions are missing from normal sites in equal number. This is an example of -25 (B) Interstitial defect (C) Frenkel defect (A) F-centres (D) Schottky defect 26 Xenon crystallizes in face centre cubic lattice and the edge of the unit cell is 620 PM, then the radius of Xenon atom is -(A) 219.20 PM (B) 438.5 PM (C) 265.5 PM (D) 536.94 PM 27 The edge length of cube is 400 PM. Its body diagonal would be -
- (A) 500 PM (B) 693 PM (C) 600 PM (D) 566 PM

•	A compound alloy of gold and copper crystallizes in a cube lattice in which the gold atoms occupy the lattice points at the coruers of cube and copper atoms occupy the centres of each of the cube faces. The					
	formula of this comp	ound is -				
	(A)AuCu	(B)AuCu ₂	(C)AuCu ₃	(D) None		
•	Lithium borohydrid The unit cell dimer 21.76 g mol ⁻¹ . The	le (LiBH ₄), crystallises nsions are : $a = 6.81$ Å density of the crystal is	s in a orthorhombic sys Å, $b = 4.43$ Å, $c = 717$	tem with 4 molecules per unit cell. Å. If the molar mass of LiBH ₄ is		
	(A) .668 g cm ^{-3}	(B) $.585 \mathrm{g}\mathrm{cm}^2$	(C) 1.23 g cm^{-3}	(D) None		
0	The unit cell of a me edge length of 409 p	The unit cell of a metallic element of atomic mass 108 gm/mole and density 10.5 g/cm ² is a cube with edge length of 409 pm. The structure of the crystal lattice is -				
	(A) fcc	(B) bcc	(C) hcp	(D) None		
	Copper metal has a fa copper ions in contac (A) 0.128 nm	ace-centred cubic structu ct along the face diagonal (B) 1.42 nm	re with the unit cell lengt I. The apparent radius of a (C) 3.22 nm	h equal to 0.361 nm. Picturing a copper ion is - (D) 4.22 nm		
	Which of the follo (A) The coordina (B)A metal that c (C) A unit cell of (D) The length of	owing statements is/ ation number of each rystallises in BCC s an ionic crystal shar f the unit cell in NaC	are correct : h type of ion in CsCl tructure has a coordi es some of its ions w	is 8. nation number 12. ith other unit cells		
	$[r_{Na^+} = 95 \text{ pm}]$; r _{Cl} ⁻ = 181 pm]	nis 552 pm.			
	$[r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3	; $r_{Cl^-} = 181 \text{ pm}$] number of cation and (B) 6:3 and 4:4	anion in Fluorite CaF ₂ (C) 8:4 and 8:	and CsCl are respectively 8 (D) 4:2 and 2:4		
	(b) The tength of [$r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3 The interstitial hole (A) It is formed by (B) Partly same and (C) It is formed by (D) None of the ab	; r _{Cl⁻} = 181 pm] number of cation and (B) 6:3 and 4:4 is called tetrahedral b four spheres. d partly different. four spheres the centro ove three.	anion in Fluorite CaF ₂ (C) 8:4 and 8: because	and CsCl are respectively 8 (D) 4:2 and 2:4 gular tetrahedron.		
	(D) The tength of [$r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3 The interstitial hole (A) It is formed by (B) Partly same and (C) It is formed by (D) None of the ab The tetrahedral voi (A) Occupied by P	; $r_{Cl^-} = 181 \text{ pm}$] number of cation and (B) 6:3 and 4:4 e is called tetrahedral b four spheres. d partly different. four spheres the centro ove three. ids formed by ccp arra Na ⁺ ions either Na ⁺ or Cl ⁻ ions	anion in Fluorite CaF ₂ (C) 8:4 and 8: because res of which form a reg angement of CI ⁻ ions in (B) Occupied (D) Vacant	and CsCl are respectively 8 (D) 4:2 and 2:4 gular tetrahedron. n rock salt structure are by Cl ⁻ ions		
	(D) The tength of [$r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3 The interstitial hole (A) It is formed by (B) Partly same and (C) It is formed by (D) None of the ab The tetrahedral voi (A) Occupied by N (C) Occupied by e The number of near	 ; r_{Cl⁻} = 181 pm] number of cation and (B) 6:3 and 4:4 e is called tetrahedral b four spheres. d partly different. four spheres the centre ove three. ids formed by ccp array va⁺ ions either Na⁺ or Cl⁻ ions arrest neighbours arour 	anion in Fluorite CaF ₂ (C) 8:4 and 8: because res of which form a reg angement of Cl ⁻ ions in (B) Occupied (D) Vacant	and CsCl are respectively 8 (D) 4:2 and 2:4 gular tetrahedron. n rock salt structure are by Cl ⁻ ions e-centred cubic lattice is		
	(D) The tength of [$r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3 The interstitial hole (A) It is formed by (B) Partly same and (C) It is formed by (D) None of the ab The tetrahedral voi (A) Occupied by N (C) Occupied by e The number of near (A) 4	; $r_{Cl^-} = 181 \text{ pm}$] number of cation and (B) 6:3 and 4:4 is called tetrahedral b four spheres. d partly different. four spheres the centro ove three. ids formed by ccp arra Va ⁺ ions bither Na ⁺ or Cl ⁻ ions urest neighbours arour (B) 6	anion in Fluorite CaF ₂ (C) 8:4 and 8: because res of which form a reg angement of Cl ⁻ ions in (B) Occupied (D) Vacant and each particle in a fac	and CsCl are respectively 8 (D) 4:2 and 2:4 gular tetrahedron. n rock salt structure are by Cl ⁻ ions e-centred cubic lattice is (D) 12		
	(b) The tength of [$r_{Na^+} = 95 \text{ pm}$ The coordination (A) 8:4 and 6:3 The interstitial hole (A) It is formed by (B) Partly same and (C) It is formed by (D) None of the ab The tetrahedral voi (A) Occupied by P (C) Occupied by e The number of near (A) 4 A compound XY cr 225 pm, then the ra	; $r_{Cl^-} = 181 \text{ pm}$] number of cation and (B) 6:3 and 4:4 e is called tetrahedral b four spheres. d partly different. four spheres the centro ove three. ids formed by ccp arra va ⁺ ions either Na ⁺ or Cl ⁻ ions urest neighbours arour (B) 6 rystallizes in BCC lattic dius of X ⁺ is	anion in Fluorite CaF ₂ (C) 8:4 and 8: because res of which form a reg angement of Cl ⁻ ions in (B) Occupied (D) Vacant and each particle in a fac (C) 8 be with unit cell edge len	and CsCl are respectively 8 (D) 4:2 and 2:4 gular tetrahedron. n rock salt structure are by Cl^- ions e-centred cubic lattice is (D) 12 gth of 480 pm. If the radius of Y^- is		

38	The mass of a unit ce (A) 1 Cs ⁺ and 1 Cl ⁻	ll of CsCl correspond (B) 1 Cs ⁺ and 6 C	Is to I^- (C) 4 Cs ⁺ and 4	Cl− (D) 8 Cs	s ⁺ and 1 Cl ⁻
39	Which one of the foll generate close packed (A)ABCABC	owing schemes of ord l lattice. (B)ABACABAC	ering closed packed sh (C)ABBAABBA	eets of equal size (D) ABCBC	ed spheres do not ABCBC
40	An ionic compound A would be	B has ZnS type structu	re. If the radius A ⁺ is 22	2.5 pm, then the ic	leal radius of B ⁻
	(A) 54.35 pm	(B) 100 pm	(C) 145.16 pm	(D) none of th	nese
41	NH_4Cl crystallizes in distance between the (A) 335.1 pm	a body-centered cubi oppositively charged ic (B) 83.77 pm	c type lattice with a uni ons in the lattice is (C) 274.46 pm	it cell edge lengtl (D) 137.23 p	n of 387 pm. The m
42	In diamond, carbon ato of the unit cell is 356 pt (A) 77.07 pm	m occupy FCC lattice p m, then radius of carbon (B) 154.14 pm	oints as well as alternate n atom is (C) 251.7 pm	tetrahedral voids. (D) 89 pm	If edge length
43	Which of the followir (A) CaF_2	ng will show schottky o (B) ZnS	defect (C)AgCl	(D) CsCl	
44	Copper metal crystalliz that can fit into the voic (A) 53 pm	zes in FCC lattice. Edg ls of copper lattice with (B) 45 pm	e length of unit cell is 36 out disturbing it. (C) 93 pm	52 pm. The radius (D) 60 pm	of largest atom
45	In FCC unit cell, wha (A) 0.134	t fraction of edge is no (B) 0.24	ot covered by atoms? (C) 0.293	(D) None o	f these
46	In a solid "AB" having face-centred atoms alo (A)AB ₂	g NaCl structure "A" at ng one of the axes are re (B) A_2B	oms occupy the corners emoved, then the resultar $(C)A_4B_3$	of the cubic unit of the stoichiomet $(D) A_3 B_4$	cell. If all the
47	The coordination (A) 12	number of a metal c (B) 4	crystallising in a hcp (C) 8	structure is	(D) 6

48	Which of the following FCC structure contains cations in alternate tetrahedral voids?					
	(A) NaCl	(B)ZnS	(C) Na ₂ O	(D) CaF ₂		
49	The number of atc	oms in this HCP unit ce	ells is			
	(A) 4	(B) 6	(C) 12	(D) 17		
50	The volume of this	HCP unit cell is				
	(A) $24\sqrt{2} r^3$	(B) $16\sqrt{2} r^3$	(C) $12\sqrt{2}r^3$	(D) $\frac{64}{3\sqrt{3}}$ r ³		
51	The empty space in this HCP unit cell is					
	(A) 74%	(B) 47.6 %	(C) 32%	(D) 26%		

52 The packing efficiency of the two-dimensional square unit cell shown below is

53 The arrangement of X^- ions around A^+ ion in solid AX is given in the figure (not drawn to scale). If the radius of X^- is 250 pm, the radius of A^+ is

(A) 104 pm	(B) 125 pm	(C) 183 pm	(D) 57 pm	